(o) HTTP Parameter
Pollution

Chrysostomos Daniel

m CICUI'Iet I X www.acunetix.com

Introduction

Nowadays, many components from web applications are commonly run on the user’'s computer (such
as Javascript), and not just on the application’s provider server (such as Servlets). As time goes by,
there is the need for web applications to provide a multitude of services to their users while at the
same time being consistent with functionality, interactivity and ease of use. For this reason, even the
simplest web application may possibly obtain and process a plethora of different HTTP parameters.
This could result in the exposure of an extensive variety of input validation or injection vulnerabilities,
such as Cross-site Scripting, SQL Injection and Command Injection, waiting to be manipulated and
exploited.

These web vulnerabilities are now ordinary and there has been a lot of research around them which
has helped the web application field to be more secure. Nevertheless, a vulnerability that has been
around for a long time has only now begun to raise alertness in the web security world - HTTP
Parameter Pollution (HPP). This vulnerability was first presented by Stefano di Paola and Luca
Carettoni in 2009 at the OWASP Poland conference. The fact that this vulnerability has been around
for a long time means that numerous vulnerabilities affecting or targeting real-world applications
have been discovered.

HTTP Parameter Pollution (HPP) in detail

HTTP Parameter Pollution, as implied by the name, pollutes the HTTP parameters of a web application
in order to perform or achieve a specific malicious task/attack different from the intended behavior of
the web application.

This hacking technique is considered to be simple, but quite effective. Furthermore, the main reason
this attack can be realized is because the input is not get sanitized properly. HPP injects encoded
query string delimiters in existing or other HTTP parameters (i.e. GET/POST/Cookie), which make it
feasible to supersede parameter values that already exist to inject a new parameter or exploit
variables from direct access. This attack affects all web technologies, whether running client-side or
server-side.

Generally, an attacker can use HPP vulnerabilities to:

= Supersede existing hardcoded HTTP parameters.

= Alter or modify the intended/normal application behavior.

= Access and potentially exploit variables that are not been controlled properly.
= Bypass WAFs rules or input validation mechanisms.

Thus, if a web application is vulnerable to HPP attacks, the security of the web application is
compromised, giving an attacker an easy way to perform malicious or illegal activities.

Web Technologies
HTTP allows the submission of the same parameter more than once. The manipulation of the value of

each parameter depends on how each web technology is parsing these parameters. So, what happens
if the same parameter is provided more than one time?

m dcunet iX www.acunetix.com

Some web technologies parse the first or the last occurrence of the parameter, some concatenate all
the inputs and others will create an array of parameters. Below is a table showing how each web
technology is parsing different values of the same parameters at the server-side.

ASP.NET/NIS Al ozcurrences of the specific parameter parl=vall val2

ASPAIS All occurrences of the specific parameter parl=vall,valz
PHP/&pache Last accurrence pari=val2
PHP/Zeus Last occurrence parl=yzl2
ISP, Servlet/Apache Tomcat First occurrence parl=vall
J5P,Serviet/Oracle Application Server 10g First occurrence parl=vall
JEP, Sarvietdatty First accurrence parl=vall
IBM Lotus Doming Last occurrence parl=yald
IBM HTTP Server Fiest occurrence parl=vall
mod_perl lbapreq2/apache First occurrencea parl=zvall
Perl CGl/Apache First occurrence parl=vall
mod_per, lib??1/Apache Becomes an array ARPAY({DxEbS05TC)
mod_wsgi (Python)/apache First occurrence pari=vall
Python/Zope Becomes an aray [wall®, 'wal?]
lee'Warp Last occurrence parl=val2
AXIS 2400 All oceurrences of the specific parameter parl=vall,val2
Linksys Wireless-G PTZ Internet Camera Last occurrence parl=val2
Ricoh Aficio 1022 Printer First occurrence parl=vall
webcam=P PRO First pccurrence pari=vall
DEilan All occurrences of the specific parameter pari=valle~~yal2

[Reference: HTTP Parameter Pollution OWASP EUQ9 Poland presentation;
https://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf]

The following examples show how the web technology of a web application is triggering or parsing
same parameters in one query. The first example on how parameters are triggered can be shown

below using Google search engine. In Google you can have the following query;

http://www.google.com/search?q=web&q=application&qg=security

m CICUHEt i)(www.acunetix.com

Gmail More ~

Gocgle sampmmis

Search About 31,300,000 results (0.10 seconds
Everything Ad - Why this ad?
| Web App. Security - Learn More about Barracuda Networks #¢
mages www.barracudanetworks.com
Maps Complete Web Site Firewall System.
Videos
OWASP »¢
Mews https:/hwww.owasp.org/

) The Open Web Application Security Project (OWASP) is a 501¢3 not-for-profit
Shopping worldwide charitable organization focused on improving the security of application ...
Books Category:OWASP Top Ten Project - Downloads - Vulnerabilities - Top 10 2010
More Home - Web Application Security Consortium %€

www.webappsec_org/
Anv i Web Application Security Consortium The Web Application Security Consortium (
ny time WASC) is 501c3 non profit made up of an international group of experts, ...
Past hour
Past 24 hours L . o))
Past week Web application security - Wikipedia, the free encyclopedia »¢
Past manth en.wikipedia_org/wiki/Web_application_security
Past year Web application security is a branch of information security that deals specifically with

Custom range... security of websites and web applications. At a high level, Web application ...

Website Security - Acunetix Web Security Scanner »
www.acunetix.com/
Audit your website security and web applications for SQL injection, Cross site

Maore search tools scripting and other web vulnerabilities with Acunetix Web Security Scanner.
You visited this page

All results
Related searches

As shown in the above screenshot, the same parameter ‘'q’ is being used three times. In this case,
Google concatenates the three values with a space in-between, thus the end result will be ‘web
application security’.

A second example is with the search engine Yahoo!. The following query has been used:

http://search.yahoo.com/search;_ylt=Ajxtx6 DKiSkS1pjEfg6zSMWbvZx4?p=web&p=application&p=security

Having the same three parameters as with the previous example, it is shown that Yahoo! is only
parsing the last parameter, thus the end result will be ‘security’.

m C.‘ICUI'IEt I X www.acunetix.com

| @ search. yahoo.comjsearch; _ylt=AjxtE0KISKS 1pjEfoszSMWbvZx4?p =web&p=appl :E:Z-'@#—E;"—:)

Hi, Guest | Sign In Help

YaHOoO!,

WEB IMAGES VIDEO SHOPPING APPS BLOGS MORE

|S Security Certificate »¢

Anytime Earn Your IS Security Certificate 100% Online - Villanova. Learn More
Past day Villanoval.com/Certificate #4
Pastweek .)
Security »¢
Past month

Find Everyday Low Prices at Yahoo! Fantastic Deals on Security
shopping.yahoo.com #{

More Sponsors: security, security camera, cameras, security systems

social security payments

This shows clearly how each technology is differently parsing the value parameters. The way each
technology is parsing the parameters is not wrong, as long as the developer is aware of it. If the
developer is not aware of this behavior or parameter triggering, then this can be dangerous for the
web application. In addition, web technologies/languages have several secure functions that allow
them to protect themselves by being able to control and manipulate these kinds of input parameters.

Client-side and Server-Side

HTTP Parameter Pollution can be classified in two categories - client-side or server-side. Each
technology is parsing parameters differently, thus different attacks can be realized. This, depending on
the way it is being triggered, enables client-side or server-side attacks. Moreover, in each case the
parameters are manipulated accordingly to perform hacking activities at the front-end (client) or the
back-end (server) of the web application.

Client-side HTTP Parameter Pollution vulnerability

The HTTP Parameter Pollution (HPP) Client-side attack has to do with the client or user environment,
meaning that the user’s actions (i.e. access a link in a browser) are affected and will trigger a malicious
or unintended action without the user's knowledge. HPP Client-side attacks can be reflected HPP
(such as an injection of additional parameters to URL links and/or other src attributes), stored HPP
(which can be functional on all tags with data, src, and href attributes) and action forms with POST
method. Another HPP client-side attack is the DOM-based attack which has to do mostly with parsing
unexpected parameters and the realization of client-side HPP using JavaScript.

Obviously, the ability or capacity of the injection depends on the attributes of the link and its
functionalities. Nevertheless, the main aim is to generate HPP attacks on the client side.

An example of a typical HPP client-side attack includes a website that is vulnerable to HPP and a group
of victims that will interact with the vulnerable website. An attacker, after identifying a vulnerable
website, will create a vulnerable link with its HTTP parameters polluted and will send this link or make
it publicly available through emails or social networks for naive and unsuspecting victims to click on.
After the victims have clicked on it, the intended malicious behavior will be performed, affecting the
users and the web application (application providers).

m CICUI'Iet I X www.acunetix.com

The following scenario is a webmail service website from where a user can view and delete his/her
emails. The URL of the webmail website is:

http://host/viewemail.jsp?client_id=79643215

The link to view an email is

 View

The link to delete an email is:

 Delete

When the user clicks on either of the above links, the appropriate action will be performed. The two
links are built from the URL. The ID will be requested and will be embedded/added in the href link

together with the according action. Thus:

ID = Request.getParameter(“client_id")
href_link = “viewemail.jsp?client_id="+ ID + "&action=abc”

This web application, and more precisely the client_id, is vulnerable to HPP. As seen below, an attacker
creates a URL and injects another parameter ‘action’ preceded by an encoded query string delimiter
(e.g. %26) after the client_id parameter. This parameter holds the value ‘delete”:

http://host/viewemailn.jsp?client_id=79643215%26action%3Ddelete

After the creation of the malicious link, the page now contains two links which are injected with an
extra action parameter. Thus:

 View
 Delete

As shown in the table above, JSP will parse the two same parameters (action) and will return the first
value. The JSP query Request.getParameter(“action”) will return ‘delete’ in both cases. Thus, the user
will click either of the two links, View or Delete, but the action Delete will always be performed.

This is a simple example how an attacker can exploit an HTTP Parameter Pollution vulnerable website
and cause malicious code to run or be executed without being detected.

Server-side HTTP Parameter Pollution vulnerability

In the HPP Server-side the back-end environment of the web application will be affected. The attacker
using HPP attacks will try to exploit the logic of the vulnerable web application by sending a triggered,
or polluted URL, for example to access the database of a web application.

HPP Server-side can be also used to bypass several web application firewalls (WAFs) rules. Some WAFs
only validate a single parameter occurrence, such as the first or the last one. In a case where the web
technology concatenates the value of multiple parameters which are the same, such as ASP.NET/IIS,
then an attacker can split the malicious code into those occurrences thus bypassing the security
mechanism or rules of the web application firewall.

5

m CICUI'Iet I X www.acunetix.com

Moreover, URL rewriting can occur using HPP. For instance, an attacker can inject an encoded query
string in order to cause the URL to be rewritten. An example can be seen below:

Encoded string:
http://host/xyz%26page%3dedit

Rewritten URL:
http://host/page.php?page=view&page=xyz&action=edit&id=0

As mentioned before, the capability of the injection depends on the attributes of the link and its
exposed functionalities.

HPP Server-side attacks can also be used for cross-channel pollution and to bypass CSRF tokens.

In order to better understand the server-side HPP attack, the following example will try to explain how
this attack can bypass web application firewall rules or signature-based filters using concatenation of
parameters with the same values. The following URL/request is send to the server:

http://testaspnet.vulnweb.com/test/vuln.cgi?pari=val1&par2=val2

The web server will parse the above query and will split it into pairs (name/value) in order to be
manipulated or used by the web application. Thus, the web application will take par1 and par2 with
values val1 and val2 respectively. If the web application is vulnerable to HPP attacks, an attacker could
exploit it and submit a malicious payload. Take the following case:

http://testaspnet.vulnweb.com/test/vuln.cgi?pari=val1&pari=val2

You can see that there are two par1 parameters, each holding two different values. In this case how is
the application going to trigger this? It depends on the web technology, as seen in the Web
Technologies section above. Because of the different handling methods of parameters, hackers can
control them in order to avoid security mechanisms and attack the web application.

In another example, where the web technology is ASP.NET/IIS, a hacker can send the following request
to the server:

”.

http.//testaspnet.vulnweb.com/test/vuln.cgi?par1=<script&par1=prompt.”..”> ...

Since ASP.NET/IIS concatenates the values of the same parameters, the end result will be <script
prompt”...”>. Consequently, an attacker can expand this into a complete cross-site scripting attack.

If there is an installed Web Application Firewall in front of this application then it will check each
occurrence of the parameter separately against the rules for injection attacks. As a result, the web
application firewall will check the first parameter parl=<script, which will not match any of the
injection attack rules since this is not a malicious payload. Then it will make the same check for the
second parameter which equals par2=src="...". Again, this is not considered as a dangerous payload
and will not raise any alerts. Nevertheless, as mentioned before, ASP.NET/IIS will concatenate these
values, based on how the technology parses these occurrences, resulting in executing an XSS attack (if
it was expanded in a complete XSS payload).

m C.‘ICUI'IEt I X www.acunetix.com

This is an example how an attacker can bypass some web application firewalls rules using HPP,
enabling further attacks.

Countermeasures / Prevention

In order to prevent these kinds of vulnerabilities, an extensive and proper input validation should be
performed. There are safe methods to conform to with each web technology/language. Moreover,
awareness about the fact that clients/users can provide more than one parameter should be raised.

Conclusion

An injection attack that has been around for some years but never raised any alertness and didn't
particularly intrigue the security world, has come to enlighten the web security industry to the fact
that these kind of injection attacks should never be underestimated, and that the lack of
standardization of the different parsing methods each web technology encompasses, together with
complexity, might lead to vulnerabilities. HTTP Parameter Pollution takes advantage of the fact that
HTTP allows more than one of the same parameters to be used, which causes some web applications,
based on their web technology and how these trigger HTTP parameters, to be exposed and to be
exploited by malicious users. HPP is a simple yet quite effective hacking technique which affects both
client-side and server-side environments. When exploited, the impact of an HPP vulnerability depends
on the functionality of the web application.

It has been made clear that this vulnerability, despite its simplicity, can be very dangerous and can
compromise your website’s security systems. Proper checks should be performed in order to
determine if your site is vulnerable to HPP attacks in order to limit the possibilities and decrease the
opportunities that hackers can exploit that could lead to a breach of the Confidentiality, Integrity and
Availability of your site.

Scanning for HTTP Parameter Pollution with Acunetix Web Vulnerability Scanner!

Acunetix Web Vulnerability Scanner Version 8 scans any website or web application for HTTP
Parameter Pollution vulnerabilities, reveals the relevant information for the user, such as the
vulnerability location and suggests remediation techniques. Scanning for HPP is normally a quick
process (depending on the size of the web-site).

The images below demonstrate how Acunetix Web Vulnerability Scanner crawls, scans and detects a
site which is vulnerable to HTTP Parameter Pollution.

M acunetix

WwWw.acunetix.com

[&] Acumetix Web Vulnerability Scanner (Comsultant Edition) =lelx]]
| Fle Actons Tesls Confiuration Hebp I
Umeewsan |leh 2 00 8 I ER - i IR N e I
il ()15 | | i =R |) report | | sttt e e sndnwen. comesa) =] Frofie: [+r =] Bste
- % [[Stane -
I WER APPLICATION SECURITY =
L %m =1 [Scan Thread 1 (hitts sty e, com: 80/) Frrishe (15 serls) Macunetix ' !
'k G Ste Craver = il Wb et (1)
- Taeget Ender = (i HTTR Barameter Bolation (2) HTTP Parameter Pollution
B, subrkman Scarrer = L tewiin
Ejﬁ'ﬂ-‘ﬂl Irjecter = & mil Vubnerability description
HITP Editor ariant 1
& HITP Srifer =0 mw;,_wm This sexipl is possibly wine el Pallution
HTTP Fuzzer = 0 sl altacks
Husthentication Tester
% rgw!""l-pnn":" HPP atacks consist of injecting encoded query string delimiters

FHL Conligur aition

ii- i redden form input named price was found (2)

i i User credenbisls are sent in dear text (2)

w1) Broken ks (5]

- i Password Lype input with sutocomplete enabled (3)

into cther existing parameters. If the web application does not
propery sanitize the user inpul & malicious user can
compromise the logic of he application to perform either
chentside or Gerder-gide aRacks.

nning.
January 4 170647, S8ing scan results 1o datsbase ..
[Jarary 4 17:06.48, Dune saving to database,

Sanuary 4 17:06.48, Flush file buffers.

[8) sppleaton setings =1 % Knowiedge Base (3) Thiss wulnesability affects hppindex php
.;j. Sean Setngs List of fles with rputs Descovered by Scngting (HTTP_Paramater_Pollutan.scnpt.
5‘-"'“’ Frafies Link af msthoication . y
S e _ e mnpact of this vuinerability

@ ﬁw-n Undates Thie impiscd depenits on e aleced web applicalion. An allacker

{i4] Version informason - could

3 censng p » Chenidee existing e

“eriter ortidden

:} Suppert G o « Modity e appication benaviors

8] Ueer Marua (i) o = Access and, polentially explolt, uncontreliable variables:

] Liser Marvaal (petf) NotP = Bypass Inputvalidation checkpaints and WaFs rules

@ fasentat Mat Feund |
Mot Fourd Attack detads
=2 URL encoded GET inpud pp was setto BnBS78/4-viLEi s
Furbadden Farameter precedence: last cccurrence
Harl Feaad Aftectnd link: PP
Eorbidden Allectid paramuter pevalid
:?n(rme ¥ View HTTP headers

¥ Wiew HTML response
i) & Launch the attack wih HTTF Eddor
Not Found = o Bimimed minsbtn ll[
0
[ssnuary 4 17:06.47, Lxeautr septs on schame *Jshainmass. oha o s555beetcs 210 9025 e Fce E|
Tanuary 4 17:06.47, Finiched sea

Appkcaton Log [Eror Log

=lalx]
I NﬂSm|'~J;/- EFe - 5@ |8]G]
E_:) 15 | e | i o] i aeport | 2 | starturs: [t itessho minweb.com:20/ | frofe: v <l B
. Scen Renils =
& @ :::”“ 5 [Scan Thread 1 (hitm: hestohp valnmeb com:0/) Prished (150krts) (|| |~ VEWHTTF headers
= G Sie Crammdes et [ly web aerte (15) Request
) Torges Finder 1 i HTTP Do arrmster Buibstion (3} . . . ~
B, Suboensin Scarrer & [et ﬁr ;Ilzi::#l;qnli‘lfz“p-:;:u”?E?ﬁ%ﬂdvgiﬂis ETTE/L.1
,jmb::w B & () Connection: Heep-alive
variant £ Accept-Locoding: gaip,deflate
&, HITP Soifer & [heatedesoro (D) Taer-Rgent: Mozilla/d.0 {eospati WATE B.0;
:m‘:vmmrm 5 9 poll Windows NT £.0)
2 Compar ::emlh S| variant 1 Aecept: /T
.
& Wb Servioms () Hackden form ioput romed prioe waa found (2)
4% Web Services Scanner i I User credentals are sent in dear text (2)
&7 Web Servces Edaor - i) Broken ks (5] Response
Gl i Confgrason @ i Password type input with autecemplete enabied (3)
] b = HTTP/1.1 200 OF
3 & Q o Daze: Wed, 04 Jan 2012 28 T
| Sran Setengs = . n 128 CMT
2 Seaning ProSe: ::":hm':;::‘ ApachesZ.0.55 (Ubuntu) mod python/d.1.
EHES General af usentication pages Bython/2.4.3 PHE/S.1.2 mud_ss1/2.0.55
' @ Pregram Lpviates st of exiemal hosts = Cpenssl/0.9.8a maa pﬂ-l_ﬂ 0.7 Perlive.s.7
[z] Version Information e Stnusae
] Sappert Conter (g admn Sxebudden
Purchase e g aa ot Found
4] User Manasal fntm) - compat Ferbidden
Bl ser Marual (o) [i cornectons Nt Feund
B hausenaor i o st Found
B g fash Pk Found
6 @ ke o
= g — ‘:-an. Hove b ix Ehis vulnerability
) pehres Ferhidden The application sheuld property sanize user Input (LURL encode}
- i secwred o 10 protect against this vuinerability.
; g e ":: e Wb rferaces
s seetien
& g _mmserverscrpts it Found =| = HIITF Paramater Pollution =
Acthaty Wandow u
e
Tarviary 4 17206, 47, Eraing wrgts on scheme -[showmage. ph A 455072 163925 1Eefacsor- =
{Famuary 4 1/:00.4/, Fnnshed scannmg.
[larwsary 4 1 47, Saang scan resudts i database ...
larary 4 17:06.45, Done save o database.
Plarwary 4 17:06.48, Flush fle buffers. j
Appheation Log | Error Log
[Peay I

Acunetix Web Vulnerability Scanner Version 8 scans against HPP vulnerabilities, reporting the location
of the vulnerability, the HTTP headers and HTML response with information regarding the HPP
vulnerability and how this can be remediated.

m C.‘ICUI'IEt I X www.acunetix.com

About Acunetix Web Vulnerability Scanner

Acunetix Web Vulnerability Scanner ensures website security by automatically checking for SQL
injection, Cross-Site Scripting and other vulnerabilities. The scanner checks password strength on
authentication pages and automatically audits shopping carts, forms, dynamic content and other web
applications. Detailed reports resulting from the scan identify where vulnerabilities exist. The Acunetix
WVS Reporting Application allows security alerts to be presented in a document which abides by the
PCI Compliance specification.

About Acunetix

Acunetix is a market leader in web application security technology, founded to combat the alarming
rise in web attacks. Its flagship product, Acunetix Web Vulnerability Scanner, is the result of several
years of work by a team of highly experienced security developers. Acunetix customers include the US
Army, US Airforce, AT&T, KPMG, Telstra, Fujitsu, and Adidas. More information can be found
here http://www.acunetix.com/.

http://www.acunetix.com/vulnerability-scanner/�
http://www.acunetix.com/websitesecurity/sql-injection.htm�
http://www.acunetix.com/websitesecurity/sql-injection.htm�
http://www.acunetix.com/websitesecurity/cross-site-scripting.htm�
http://www.acunetix.com/support/vulnerability-checks.htm�
http://www.acunetix.com/vulnerability-scanner/�
http://www.acunetix.com/�

	cover WVS copy
	Acunetix WVS8 White Paper revised.pdf
	Introduction
	HTTP Parameter Pollution (HPP) in detail
	Web Technologies
	Client-side and Server-Side
	Client-side HTTP Parameter Pollution vulnerability
	The link to view an email is
	Server-side HTTP Parameter Pollution vulnerability
	Countermeasures / Prevention
	Conclusion
	Scanning for HTTP Parameter Pollution with Acunetix Web Vulnerability Scanner!
	About Acunetix Web Vulnerability Scanner
	About Acunetix

